User:ColorfulGalaxy/Encyclopedia of numbers:修订间差异
外观
ColorfulGalaxy(留言 | 贡献) →23: Mentioned by Shidinn enthusiast |
ColorfulGalaxy(留言 | 贡献) →42: Confirmed by dictionary |
||
(未显示5个用户的84个中间版本) | |||
第14行: | 第14行: | ||
<div style="border:2px solid blue;">Positive prime numbers </div> | <div style="border:2px solid blue;">Positive prime numbers </div> | ||
<div style="border:2px solid | <div style="border:2px solid magenta;">Number (excluding positive prime numbers) whose absolute value is an integer</div> | ||
<div style="border:2px solid orange;">Number whose absolute value is a rational number that is not integer</div> | <div style="border:2px solid orange;">Number whose absolute value is a rational number that is not integer</div> | ||
<div style="border:2px solid | <div style="border:2px solid cyan;">Number whose absolute value is an algebraic irrational number</div> | ||
<div style="border:2px solid green;">Number whose absolute value is a transcendental real number</div> | <div style="border:2px solid green;">Number whose absolute value is a transcendental real number</div> | ||
<div style="border:2px solid red;">Unknown/approximation</div> | <div style="border:2px solid red;">Unknown/approximation</div> | ||
Some terms can have subscripts. " | Some terms can have subscripts. They indicate which base<ref name="base"/> the property applies in. For example, "digit<sub>14</sub>"<ref name="digit"/> is read as "tetradecimal digit". | ||
==Numbers== | ==Numbers== | ||
第41行: | 第41行: | ||
* ... is the only even positive prime number. | * ... is the only even positive prime number. | ||
* ... is an RDI<sub>7</sub><ref name="rdi"/> of order 2. | * ... is an RDI<sub>7</sub><ref name="rdi"/> of order 2. | ||
* ... is the last distinct digit<sub>7</sub><ref name="digit"/> to encounter when the digits<sub>7</sub> of π are scanned<ref name="constantdigitscanning"/>. | |||
</div> | </div> | ||
第47行: | 第48行: | ||
* ... is the smallest odd positive prime number. | * ... is the smallest odd positive prime number. | ||
* ... is the smallest Full Reptend Prime<sub>14</sub><ref name="frp"/>. | * ... is the smallest Full Reptend Prime<sub>14</sub><ref name="frp"/>. | ||
</div> | |||
===π=== | |||
<div style="border:2px solid green;"> | |||
* ... contains almost everyone's birthday in 6-digit or 8-digit form. | |||
* ... is the irrational number that we most known. | |||
</div> | </div> | ||
第52行: | 第59行: | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the smallest positive composite number. | * ... is the smallest positive composite number. | ||
* ... is the 2nd square number. | |||
* ... is the largest known positive integer ''n'' such that there exists an arithmetic progression with ''n'' terms (all positive, indexed 1 through ''n'') satisfying the fact that the number of positive factors each term has is exactly equal to the term's index. | |||
</div> | </div> | ||
===5=== | ===5=== | ||
<div style="border:2px solid blue"> | <div style="border:2px solid blue"> | ||
* ... is the smallest positive odd number that is not a repunit< | * ... is the smallest positive odd number that is not a repunit<sub>2</sub><ref name="repunit"/> number. | ||
* ... is the number of Platonic solids. | * ... is the number of Platonic solids. | ||
* ... is the number of letters in the longest word in Shidinn. There are 278 known five-letter words. | |||
* ... was the number of members in the Shidinn community administration committee when it started. | |||
* ... consecutive digits<sub>7</sub><ref name="digit"/> after the point in π are multiples of 3. | |||
</div> | </div> | ||
第64行: | 第76行: | ||
* ... is the smallest positive composite number that is not a perfect power. | * ... is the smallest positive composite number that is not a perfect power. | ||
* ... is the largest digit<sub>7</sub><ref name="digit"/>. | * ... is the largest digit<sub>7</sub><ref name="digit"/>. | ||
* ... is the smallest perfect number. | |||
* ... is the number of known Shidinn characters with [[希顶解经|numeral sum]] of exactly 100000. | |||
</div> | </div> | ||
第73行: | 第87行: | ||
* ... is the smallest positive strobogrammatic<sub>[[希顶字母数字|xdi8]]</sub> number. | * ... is the smallest positive strobogrammatic<sub>[[希顶字母数字|xdi8]]</sub> number. | ||
* ... is the number of classical elements in Shidinn culture. See [[Seven elements]]. | * ... is the number of classical elements in Shidinn culture. See [[Seven elements]]. | ||
* ... is the smallest known positive non-unity integer ''n'' such that there exists a three-digit<sub>n</sub><ref name="digit"/> number k=a×n<sup>2</sup>+b×n+c satisfying that k-1, k and k+1 have a, b and c positive factors respectively. | * ... is the unique positive integer ''n'' such that "the smallest integer ''m'' such that e<sup>''m''</sup> exceeds ''n''<sup>''n''</sup> is exactly equal to 2''n''". | ||
* ... is the smallest positive non-unity integer ''n'' such that there exists a four-digit<sub>n</sub><ref name="digit"/> repdigit<sub>n</sub><ref name="repdigit"/> square number. | |||
* ... is the smallest known positive non-unity integer ''n'' such that there exists a three-digit<sub>n</sub><ref name="digit"/> number k=a×n<sup>2</sup>+b×n+c satisfying that k-1, k and k+1 have a, b and c (i. e. its digits) positive factors respectively. | |||
* ... is the number that represents God in western culture. | |||
</div> | </div> | ||
第82行: | 第99行: | ||
* ... is the largest cube in the Fibonacci sequence. | * ... is the largest cube in the Fibonacci sequence. | ||
* ... is the second smallest repunit<sub>7</sub><ref name="repunit"/> number. | * ... is the second smallest repunit<sub>7</sub><ref name="repunit"/> number. | ||
* ... is the smallest known repfigit<sub>7</sub><ref name="repfigit"/> number. | |||
* ... is the third smallest positive 1-automorphic<sub>14</sub><ref name="automorphic"/> number. | * ... is the third smallest positive 1-automorphic<sub>14</sub><ref name="automorphic"/> number. | ||
* ... is the second cubic number. | |||
</div> | </div> | ||
第91行: | 第110行: | ||
* ... is the smallest positive integer ''n'' such that 3<sup>''n''</sup> starts with three identical digits<sub>7</sub><ref name="digit"/>. | * ... is the smallest positive integer ''n'' such that 3<sup>''n''</sup> starts with three identical digits<sub>7</sub><ref name="digit"/>. | ||
* ... is the smallest positive integer ''n'' such that ''n''<sup>''n''</sup> is pandigital<sub>7</sub><ref name="pandigital"/>. | * ... is the smallest positive integer ''n'' such that ''n''<sup>''n''</sup> is pandigital<sub>7</sub><ref name="pandigital"/>. | ||
* ... is the largest digit in base<ref name="base"/> 10. | |||
</div> | </div> | ||
===10=== | ===10=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the smallest positive even number ''n'' where ''n''-1 is a Fermat pseudoprime<sub>''n''</sub>. | * ... is the smallest positive even number ''n'' where ''n''-1 is a Fermat pseudoprime<sub>''n''</sub><ref name="psp"/>. | ||
* ... is the smallest positive integer that is not a Harshad<sub>7</sub><ref name="harshad"/> number. | * ... is the smallest positive integer that is not a Harshad<sub>7</sub><ref name="harshad"/> number. | ||
* ... is a Narcissistic<sub>7</sub><ref name="narcissistic"/> number. | * ... is a Narcissistic<sub>7</sub><ref name="narcissistic"/> number. | ||
* ... is a disarium<sub>7</sub><ref name="disarium"/> number. | * ... is a disarium<sub>7</sub><ref name="disarium"/> number. | ||
* ... is the number of digits<sub>7</sub><ref name="digit"/> after the point to be scanned<ref name="constantdigitscanning"/> in order to get all seven digits<sub>7</sub> from π. | |||
* ... is the unique positive integer that comes between <math>\sqrt{7\times14}</math> and <math>\frac{7+14}{2}</math>. | |||
* ... is a strobogrammatic<sub>[[希顶字母数字|xdi8]]</sub> number. | * ... is a strobogrammatic<sub>[[希顶字母数字|xdi8]]</sub> number. | ||
* ... is the number of current members in the Shidinn community administration committee. | |||
</div> | </div> | ||
第110行: | 第133行: | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the smallest abundant number. | * ... is the smallest abundant number. | ||
* ... is the number of two-digit<sub>7</sub><ref name="digit"/> prime numbers. | |||
* ... is the smallest known positive non-unity integer ''n'' such that there exists a five-digit<sub>n</sub><ref name="digit"/> number k=a×n<sup>4</sup>+b×n<sup>3</sup>+c×n<sup>2</sup>+d×n+f satisfying that k-2, k-1, k, k+1 and k+2 have a, b, c, d and f (i. e. its digits) positive factors respectively. More surprisingly, that number is a repdigit<sub>12</sub><ref name="repdigit"/> number. | |||
* ... is the smallest true composite number. | |||
</div> | </div> | ||
第119行: | 第145行: | ||
* ... is an RDI<sub>7</sub><ref name="rdi"/> of order 2. | * ... is an RDI<sub>7</sub><ref name="rdi"/> of order 2. | ||
* ... is the smallest positive odd Fibonacci number that is not palindromic<sub>2</sub><ref name="palindromic"/>. | * ... is the smallest positive odd Fibonacci number that is not palindromic<sub>2</sub><ref name="palindromic"/>. | ||
* ... is the number that represents Devil in western culture. | |||
</div> | </div> | ||
第124行: | 第151行: | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the smallest positive two-digit<sub>14</sub><ref name="digit"/> number. | * ... is the smallest positive two-digit<sub>14</sub><ref name="digit"/> number. | ||
* ... is the smallest two-digit<sub>7</sub><ref name="digit"/> "kind<sub>7</sub>"<ref name="a185186"/> number. | |||
* ... is the smallest integer ''n'' such that e<sup>''n''</sup> exceeds 7<sup>7</sup>. | |||
* ... is the index of the nasal sibilant in the [[Shidinn alphabet]]. | |||
</div> | </div> | ||
第160行: | 第190行: | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the smallest positive integer ''n'' such that 2<sup>''n''</sup> is pandigital<sub>7</sub><ref name="pandigital"/>. | * ... is the smallest positive integer ''n'' such that 2<sup>''n''</sup> is pandigital<sub>7</sub><ref name="pandigital"/>. | ||
* ... is the smallest positive non-repdigit<sub>7</sub> integer whose square is repdigit<sub>7</sub><ref name="repdigit"/>. | |||
* ... is the integer that caused an "e-mail war" between Shidinn enthusiasts on February 24, 2025. | |||
</div> | </div> | ||
===21=== | ===21=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the sum of all the one-digit<sub>7</sub><ref name="digit"/> numbers. It is also the numbers of dots on the dice used in most of the board games. | |||
* ... is the third smallest repunit<sub>4</sub><ref name="repunit"/> number. | * ... is the third smallest repunit<sub>4</sub><ref name="repunit"/> number. | ||
* ... is the third smallest<sup>[lɤ ɛyuə iq<small><small>8</small></small> q<small><small>6</small></small>]</sup> positive integer whose tesseractic is a happy<sub>14</sub><ref name="happy"/> number. | * ... is the third smallest<sup>[lɤ ɛyuə iq<small><small>8</small></small> q<small><small>6</small></small>]</sup> positive integer whose tesseractic is a happy<sub>14</sub><ref name="happy"/> number. | ||
第216行: | 第249行: | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is a repdigit<sub>14</sub><ref name="repdigit"/> number. | * ... is a repdigit<sub>14</sub><ref name="repdigit"/> number. | ||
* ... is the number of two-digit<sub>7</sub><ref name="digit"/> composite numbers. | |||
* ... is a strobogrammatic<sub>[[希顶字母数字|xdi8]]</sub> number. | * ... is a strobogrammatic<sub>[[希顶字母数字|xdi8]]</sub> number. | ||
</div> | </div> | ||
第230行: | 第264行: | ||
* ... is a repdigit<sub>7</sub><ref name="repdigit"/> number. | * ... is a repdigit<sub>7</sub><ref name="repdigit"/> number. | ||
* ... is a narcissistic<sub>7</sub><ref name="narcissistic"/> number. | * ... is a narcissistic<sub>7</sub><ref name="narcissistic"/> number. | ||
* ... is the second smallest positive hyperhypercube number. | |||
</div> | </div> | ||
第284行: | 第319行: | ||
===41=== | ===41=== | ||
<div style="border:2px solid blue"> | <div style="border:2px solid blue"> | ||
* ... is the sum of all the one-digit<sub>14</sub><ref name="digit"/> prime numbers. | |||
</div> | </div> | ||
===42=== | ===42=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the number of U. S. states in the fictional [[希顶世界线|Shidinn timeline]]. | |||
* ... is the number that was been thought as the truth of the universe. | |||
* ... is the number of years between Jay Chou's date of birth and the creation of this wiki. Jay Chou and Shidinn Wiki have the same birthday. (This entry was added by Translated ORK, making it questionable.) | |||
</div> | </div> | ||
第316行: | 第353行: | ||
===47=== | ===47=== | ||
<div style="border:2px solid blue"> | <div style="border:2px solid blue"> | ||
* ... is the largest two-digit<sub>7</sub><ref name="digit"/> prime number. | |||
* ... is the [[平原素数系统|representative prime number]] of [[User:Rachel1211]]. | |||
* ... is featured on [http://www.zhihu.com/question/12695389890 this website]. You can submit entries there. | |||
</div> | </div> | ||
===48=== | ===48=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the largest two-digit<sub>7</sub><ref name="digit"/> number. | |||
</div> | </div> | ||
===49=== | ===49=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the smallest three-digit<sub>7</sub><ref name="digit"/> number. | |||
* ... is the sum of all the one-digit<sub>14</sub><ref name="digit"/> composite numbers. | |||
</div> | </div> | ||
===50=== | ===50=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the smallest positive palindromic<sub>7</sub><ref name="palindromic"/> number that is not repdigit<sub>7</sub><ref name="repdigit"/>. | |||
</div> | </div> | ||
第346行: | 第386行: | ||
===53=== | ===53=== | ||
<div style="border:2px solid blue"> | <div style="border:2px solid blue"> | ||
* ... is the smallest three-digit<sub>7</sub><ref name="digit"/> prime number. | |||
</div> | </div> | ||
第356行: | 第396行: | ||
===55=== | ===55=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the second smallest positive integer that is both square pyramidal and triangular, as mentioned by a Shidinn enthusiast. | |||
</div> | </div> | ||
第366行: | 第406行: | ||
===57=== | ===57=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the third smallest repunit<sub>7</sub><ref name="repunit"/> number. | |||
* ... is the number of distinct symbols in the standard "Spot it" pack, with 8 symbols on each card. (See [[#73|<span style="color:green;">73</span>]]) | |||
</div> | </div> | ||
第376行: | 第417行: | ||
===59=== | ===59=== | ||
<div style="border:2px solid blue"> | <div style="border:2px solid blue"> | ||
* ... is the smallest three-digit<sub>7</sub><ref name="digit"/> twin prime. | |||
* ... is the smallest prime number that can be expressed as 8 times a square number plus 27 times a square number. This property of prime numbers was mentioned by a Shidinn enthusiast as an "unfortunate" property. | |||
</div> | </div> | ||
第411行: | 第453行: | ||
===66=== | ===66=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the third smallest Smarandache<sub>7</sub><ref name="smarandache"/> number. | |||
</div> | </div> | ||
第436行: | 第478行: | ||
===71=== | ===71=== | ||
<div style="border:2px solid blue"> | <div style="border:2px solid blue"> | ||
* ... is the largest known positive integer whose square can be written as one plus the factorial of another positive integer. | |||
* ... is the smallest positive palindromic<sub>7</sub><ref name="palindromic"/> prime number that is not repdigit<sub>7</sub><ref name="repdigit"/>. | |||
* ... is featured on [http://www.zhihu.com/question/14793120356 this website]. You can submit entries there. | |||
</div> | </div> | ||
===72=== | ===72=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the smallest positive integer that is not a perfect power but can be written as the product of perfect powers. | |||
</div> | </div> | ||
===73=== | ===73=== | ||
<div style="border:2px solid blue"> | <div style="border:2px solid blue"> | ||
* ... is the third smallest repunit<sub>8</sub><ref name="repunit"/> number. | |||
* ... is the third smallest positive integer that is both palindromic<sub>2</sub><ref name="palindromic"/> and palindromic<sub>b3<ref name="balancedternary"/></sub>. | |||
* ... is the second smallest positive integer that is the sum of three different positive cubic numbers. | |||
* ... is the sum of the cubes of the three smallest positive palindromic<sub>3</sub><ref name="palindromic"/> numbers. | |||
* ... is the smallest non-palindromic<sub>7</sub><ref name="palindromic"/> positive prime number that ends with two identical digits<sub>7</sub><ref name="digit"/>. | |||
* ... is the number of cards in the [[Seven elements]] poker game. The pack has 7 suits of 10 cards each, along with three extra cards (INF, 7UT and blank). | |||
* ... is the theoretical number of distinct symbols in "Spot it" variant, with 9 symbols (instead of 8) on each card. | |||
* ... is a number worshipped in Shidinn culture. | |||
* ... is featured on [http://www.zhihu.com/question/8988346680 this website]. You can submit entries there. | |||
</div> | </div> | ||
第461行: | 第513行: | ||
===76=== | ===76=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the sum of the first three Smarandache<sub>7</sub><ref name="smarandache"/> numbers. | |||
</div> | </div> | ||
第486行: | 第538行: | ||
===81=== | ===81=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the third smallest positive tesseractic number. | |||
* ... is in the username of [[User:DGCK81LNN]]. | |||
</div> | </div> | ||
===82=== | ===82=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is a strobogrammatic<sub>[[希顶字母数字|xdi8]]</sub> number. | |||
</div> | </div> | ||
第506行: | 第559行: | ||
===85=== | ===85=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the largest known index of a square pyramidal number that is also triangular. Its index in the triangular sequence is 645. | |||
* ... is the smallest positive palindromic<sub>7</sub><ref name="palindromic"/> semiprime that is not repdigit<sub>7</sub><ref name="repdigit"/>. | |||
</div> | </div> | ||
第526行: | 第580行: | ||
===89=== | ===89=== | ||
<div style="border:2px solid blue"> | <div style="border:2px solid blue"> | ||
* ... is the total number of letters in the [[Shidinn alphabet]] and the Extended Shidinn alphabet, including the "number zero" letter. | |||
</div> | </div> | ||
第536行: | 第590行: | ||
===91=== | ===91=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the sum of all the one-digit<sub>14</sub><ref name="digit"/> numbers. | |||
* ... is the third smallest repunit<sub>9</sub><ref name="repunit"/> number. | |||
* ... is the third smallest positive integer that is both square pyramidal and triangular, as mentioned by a Shidinn enthusiast. | |||
</div> | </div> | ||
第566行: | 第622行: | ||
===97=== | ===97=== | ||
<div style="border:2px solid blue"> | <div style="border:2px solid blue"> | ||
* ... is the last prime number that 10 ≤ x ≤ 99. | |||
</div> | </div> | ||
第581行: | 第637行: | ||
===100=== | ===100=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the smallest 2-digit<sub>100</sub> number. | |||
</div> | </div> | ||
第651行: | 第707行: | ||
===114=== | ===114=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the number that is CURRENTLY thought as the truth of the universe. | |||
</div> | </div> | ||
第716行: | 第772行: | ||
===127=== | ===127=== | ||
<div style="border:2px solid blue"> | <div style="border:2px solid blue"> | ||
* ... is a number worshipped in Shidinn culture.<sup>[lɤ ɛyuə iq<small><small>8</small></small> q<small><small>6</small></small>]</sup> | |||
</div> | </div> | ||
第1,046行: | 第1,102行: | ||
===193=== | ===193=== | ||
<div style="border:2px solid blue"> | <div style="border:2px solid blue"> | ||
* ... is the largest two-digit<sub>14</sub><ref name="digit"/> prime number. | |||
</div> | </div> | ||
第1,056行: | 第1,112行: | ||
===195=== | ===195=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the largest two-digit<sub>14</sub><ref name="digit"/> number. | |||
</div> | </div> | ||
===196=== | ===196=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the smallest three-digit<sub>14</sub><ref name="digit"/> number. | |||
</div> | </div> | ||
===197=== | ===197=== | ||
<div style="border:2px solid blue"> | <div style="border:2px solid blue"> | ||
* ... is the smallest three-digit<sub>14</sub><ref name="digit"/> prime number. | |||
* ... is the smallest positive palindromic<sub>14</sub><ref name="palindromic"/> number that is not repdigit<sub>14</sub><ref name="repdigit"/>. | |||
* ... is the smallest positive palindromic<sub>14</sub><ref name="palindromic"/> prime number that is not repdigit<sub>14</sub><ref name="repdigit"/>. | |||
</div> | </div> | ||
第1,086行: | 第1,144行: | ||
===201=== | ===201=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the smallest three-digit<sub>14</sub><ref name="digit"/> squarefree<ref name="squarefree"/> composite number. | |||
</div> | </div> | ||
第1,136行: | 第1,194行: | ||
===211=== | ===211=== | ||
<div style="border:2px solid blue"> | <div style="border:2px solid blue"> | ||
* ... is the third smallest repunit<sub>14</sub><ref name="repunit"/> number. | |||
* ... is the smallest repunit<sub>14</sub><ref name="repunit"/> prime number. | |||
</div> | </div> | ||
第1,206行: | 第1,265行: | ||
===225=== | ===225=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the second smallest three-digit<sub>14</sub><ref name="digit"/> square number. | |||
</div> | </div> | ||
第1,216行: | 第1,275行: | ||
===227=== | ===227=== | ||
<div style="border:2px solid blue"> | <div style="border:2px solid blue"> | ||
* ... is the third smallest Smarandache<sub>14</sub><ref name="smarandache"/> number, as well as the smallest Smarandache<sub>14</sub> prime number. | |||
* ... is the second smallest prime number that can be expressed as 8 times a square number plus 27 times a square number. This property of prime numbers was mentioned by a Shidinn enthusiast as an "unfortunate" property. | |||
</div> | </div> | ||
第1,593行: | 第1,653行: | ||
==References== | ==References== | ||
<references><ref name="digit">[http://mathworld.wolfram.com/Digit.html Digit] on Wolfram Mathworld</ref> | <references><ref name="base">'''[http://mathworld.wolfram.com/Base.html Base] on Wolfram Mathwold'''</ref><ref name="digit">[http://mathworld.wolfram.com/Digit.html Digit] on Wolfram Mathworld</ref> | ||
<ref name="constantdigitscanning">[http://mathworld.wolfram.com/ConstantDigitScanning.html Constant digit scanning] on Wolfram Mathworld</ref> | |||
<ref name="concatenation">[http://mathworld.wolfram.com/Concatenation.html Concatenation] on Wolfram Mathworld</ref> | <ref name="concatenation">[http://mathworld.wolfram.com/Concatenation.html Concatenation] on Wolfram Mathworld</ref> | ||
<ref name="reversal">[http://mathworld.wolfram.com/Reversal.html Reversal] on Wolfram Mathworld</ref> | <ref name="reversal">[http://mathworld.wolfram.com/Reversal.html Reversal] on Wolfram Mathworld</ref> | ||
第1,602行: | 第1,663行: | ||
<ref name="smarandache">[http://mathworld.wolfram.com/SmarandacheNumber.html Smarandache number] on Wolfram Mathworld</ref> | <ref name="smarandache">[http://mathworld.wolfram.com/SmarandacheNumber.html Smarandache number] on Wolfram Mathworld</ref> | ||
<ref name="harshad">[http://mathworld.wolfram.com/HarshadNumber.html Harshad number] on Wolfram Mathworld</ref> | <ref name="harshad">[http://mathworld.wolfram.com/HarshadNumber.html Harshad number] on Wolfram Mathworld</ref> | ||
<ref name="a185186">[http://oeis.org/A185186 "Kind" number] on OEIS</ref> | |||
<ref name="repfigit">[http://mathworld.wolfram.com/KeithNumber.html Repfigit] on Wolfram Mathworld</ref> | <ref name="repfigit">[http://mathworld.wolfram.com/KeithNumber.html Repfigit] on Wolfram Mathworld</ref> | ||
<ref name="rdi">[http://mathworld.wolfram.com/RecurringDigitalInvariant.html Recurring digial invariant] on Wolfram Mathworld</ref> | <ref name="rdi">[http://mathworld.wolfram.com/RecurringDigitalInvariant.html Recurring digial invariant] on Wolfram Mathworld</ref> | ||
<ref name="happy">[http://mathworld.wolfram.com/HappyNumber.html Happy number] on Wolfram Mathworld</ref> | <ref name="happy">[http://mathworld.wolfram.com/HappyNumber.html Happy number] on Wolfram Mathworld</ref> | ||
<ref name="unhappy">[http://mathworld.wolfram.com/UnhappyNumber.html Unhappy number] on Wolfram Mathworld</ref> | <!--<ref name="unhappy">[http://mathworld.wolfram.com/UnhappyNumber.html Unhappy number] on Wolfram Mathworld</ref>--> | ||
<ref name="narcissistic">[http://mathworld.wolfram.com/NarcissisticNumber.html Narcissistic number] on Wolfram Mathworld</ref> | <ref name="narcissistic">[http://mathworld.wolfram.com/NarcissisticNumber.html Narcissistic number] on Wolfram Mathworld</ref> | ||
<ref name="disarium">[http://oeis.org/A032799 Disarium number] on OEIS</ref> | <ref name="disarium">[http://oeis.org/A032799 Disarium number] on OEIS</ref> | ||
<ref name="psp">[http://mathworld.wolfram.com/FermatPseudoprime.html Fermat pseudoprime] on Wolfram Mathworld</ref> | |||
<ref name="automorphic">[http://mathworld.wolfram.com/AutomorphicNumber.html Automorphic number] on Wolfram Mathworld</ref> | <ref name="automorphic">[http://mathworld.wolfram.com/AutomorphicNumber.html Automorphic number] on Wolfram Mathworld</ref> | ||
<ref name="cyclic">[http://mathworld.wolfram.com/CyclicNumber.html Cyclic number] on Wolfram Mathworld</ref> | <ref name="cyclic">[http://mathworld.wolfram.com/CyclicNumber.html Cyclic number] on Wolfram Mathworld</ref> | ||
<ref name="frp">[http://mathworld.wolfram.com/FullReptendPrime.html Full Reptend Prime] on Wolfram Mathworld</ref> | <ref name="frp">[http://mathworld.wolfram.com/FullReptendPrime.html Full Reptend Prime] on Wolfram Mathworld</ref> | ||
<ref name="friedman">[http://erich-friedman.github.io/mathmagic/0800.html Friedman numbers, Nice Friedman numbers]</ref> | <ref name="balancedternary">[http://simple.wikipedia.org/wiki/Balanced_ternary Balanced ternary] on Simple Wikipedia</ref> | ||
<ref name="almostfriedman">[http://erich-friedman.github.io/mathmagic/0713.html Fractional Friedman numbers, Redundant Friedman numbers, Almost Friedman numbers, Non-integral Friedman numbers]</ref> | <!--<ref name="friedman">[http://erich-friedman.github.io/mathmagic/0800.html Friedman numbers, Nice Friedman numbers]</ref>--> | ||
<ref name="friedmanpair">[http://erich-friedman.github.io/mathmagic/0619.html Anti-Friedman number, Shifted | <!--<ref name="almostfriedman">[http://erich-friedman.github.io/mathmagic/0713.html Fractional Friedman numbers, Redundant Friedman numbers, Almost Friedman numbers, Non-integral Friedman numbers]</ref>--> | ||
<ref name="friedmanpair">[http://erich-friedman.github.io/mathmagic/0619.html Anti-Friedman number, Shifted Friedman number, Friedman pair, Friedman loop]</ref> | |||
<!-- Non-digit related properties --> | |||
<ref name="squarefree">[http://mathworld.wolfram.com/Squarefree.html Squarefree number] on Wolfram Mathworld</ref> | |||
</references> | </references> | ||
==External links== | ==External links== | ||
* [http://www.archimedes-lab.org/numbers/Num1_69.html Numbers] on Archimedes Lab | * [http://www.archimedes-lab.org/numbers/Num1_69.html Numbers] on Archimedes Lab |
2025年4月28日 (一) 21:59的最新版本
This article is inspired by this article, which was biased towards decimal properties and did not mention imaginary numbers. This article, instead, is biased towards septenary and tetradecimal properties, though the numbers are written in decimal. Shidinn-related entries are also welcome.
目录 | ||||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 7 | 14 | 49 | 196 | 343 | 2744 |
Top of page — Legend — See also — External links |
Legend
Positive prime numbers
Number (excluding positive prime numbers) whose absolute value is an integer
Number whose absolute value is a rational number that is not integer
Number whose absolute value is an algebraic irrational number
Number whose absolute value is a transcendental real number
Unknown/approximation
Some terms can have subscripts. They indicate which base[1] the property applies in. For example, "digit14"[2] is read as "tetradecimal digit".
Numbers
0
- ... is the smallest non-negative number.
- ... is the additive identity.
1
- ... is the smallest positive number.
- ... is the multiplicative identity.
2
3
- ... is the smallest odd positive prime number.
- ... is the smallest Full Reptend Prime14[5].
π
- ... contains almost everyone's birthday in 6-digit or 8-digit form.
- ... is the irrational number that we most known.
4
- ... is the smallest positive composite number.
- ... is the 2nd square number.
- ... is the largest known positive integer n such that there exists an arithmetic progression with n terms (all positive, indexed 1 through n) satisfying the fact that the number of positive factors each term has is exactly equal to the term's index.
5
- ... is the smallest positive odd number that is not a repunit2[6] number.
- ... is the number of Platonic solids.
- ... is the number of letters in the longest word in Shidinn. There are 278 known five-letter words.
- ... was the number of members in the Shidinn community administration committee when it started.
- ... consecutive digits7[2] after the point in π are multiples of 3.
6
- ... is the smallest positive composite number that is not a perfect power.
- ... is the largest digit7[2].
- ... is the smallest perfect number.
- ... is the number of known Shidinn characters with numeral sum of exactly 100000.
7
- ... is the third smallest repunit2[6] number.
- ... is the smallest positive two-digit7[2] number.
- ... is the second smallest positive 1-automorphic14[7] number.
- ... is the smallest positive strobogrammaticxdi8 number.
- ... is the number of classical elements in Shidinn culture. See Seven elements.
- ... is the unique positive integer n such that "the smallest integer m such that em exceeds nn is exactly equal to 2n".
- ... is the smallest positive non-unity integer n such that there exists a four-digitn[2] repdigitn[8] square number.
- ... is the smallest known positive non-unity integer n such that there exists a three-digitn[2] number k=a×n2+b×n+c satisfying that k-1, k and k+1 have a, b and c (i. e. its digits) positive factors respectively.
- ... is the number that represents God in western culture.
8
- ... is the smallest positive composite cube number.
- ... is the smallest positive composite Fibonacci number.
- ... is the largest cube in the Fibonacci sequence.
- ... is the second smallest repunit7[6] number.
- ... is the smallest known repfigit7[9] number.
- ... is the third smallest positive 1-automorphic14[7] number.
- ... is the second cubic number.
9
- ... is the smallest positive odd composite number.
- ... is the second smallest Smarandache7[10] number.
- ... is the smallest positive integer n such that 3n starts with three identical digits7[2].
- ... is the smallest positive integer n such that nn is pandigital7[11].
- ... is the largest digit in base[1] 10.
10
- ... is the smallest positive even number n where n-1 is a Fermat pseudoprimen[12].
- ... is the smallest positive integer that is not a Harshad7[13] number.
- ... is a Narcissistic7[14] number.
- ... is a disarium7[15] number.
- ... is the number of digits7[2] after the point to be scanned[4] in order to get all seven digits7 from π.
- ... is the unique positive integer that comes between and .
- ... is a strobogrammaticxdi8 number.
- ... is the number of current members in the Shidinn community administration committee.
11
- ... is the smallest positive odd prime number that is not palindromic2[16].
12
- ... is the smallest abundant number.
- ... is the number of two-digit7[2] prime numbers.
- ... is the smallest known positive non-unity integer n such that there exists a five-digitn[2] number k=a×n4+b×n3+c×n2+d×n+f satisfying that k-2, k-1, k, k+1 and k+2 have a, b, c, d and f (i. e. its digits) positive factors respectively. More surprisingly, that number is a repdigit12[8] number.
- ... is the smallest true composite number.
13
14
- ... is the smallest positive two-digit14[2] number.
- ... is the smallest two-digit7[2] "kind7"[17] number.
- ... is the smallest integer n such that en exceeds 77.
- ... is the index of the nasal sibilant in the Shidinn alphabet.
15
- ... is the smallest positive odd composite number that is not a perfect power.
- ... is the second smallest repunit14[6] number.
16
17
- ... is a Fermat prime.
- ... is the smallest prime number that is the concatenation7[19] of two prime numbers.
18
- ... is the smallest two-digit14[2] number in the Fibonacci-like sequence starting with 2 and 1.
19
- ... is the smallest positive odd prime number whose reversal2[18] is composite.
20
21
22
23
- ... is the smallest prime number that is not a twin prime.
- ... is the smaller prime factor of 2047, the smallest Mersenne composite number.
24
- ... is the smallest positive integer n such that 2n ends in three identical digits7[2].
25
26
27
28
29
30
31
32
33
34
- ... is the smallest known number in a Friedman14 loop[21]:
- 26=64
- 84=4096
- 6×(12×8-1)=570
- 2×12+10=34
35
- ... is in a Friedman14 loop[21]:
- 73=343
- (1+10)×7=77
- 5×7=35
- 72=49
36
37
- ... is an RDI14[3] of order 2.
38
39
40
- ... is in a Friedman14 pair[21]:
- 122=144
- 4×10=40
41
- ... is the sum of all the one-digit14[2] prime numbers.
42
- ... is the number of U. S. states in the fictional Shidinn timeline.
- ... is the number that was been thought as the truth of the universe.
- ... is the number of years between Jay Chou's date of birth and the creation of this wiki. Jay Chou and Shidinn Wiki have the same birthday. (This entry was added by Translated ORK, making it questionable.)
43
44
45
- ... is the number of letters in the Shidinn alphabet.
- ... is a narcissistic7[14] number.
- ... is the third smallest[lɤ ɛyuə iq8 q6] positive integer whose tesseractic is a happy7[20] number.
46
47
- ... is the largest two-digit7[2] prime number.
- ... is the representative prime number of User:Rachel1211.
- ... is featured on this website. You can submit entries there.
48
- ... is the largest two-digit7[2] number.
49
50
51
52
53
- ... is the smallest three-digit7[2] prime number.
54
55
- ... is the second smallest positive integer that is both square pyramidal and triangular, as mentioned by a Shidinn enthusiast.
56
57
58
59
- ... is the smallest three-digit7[2] twin prime.
- ... is the smallest prime number that can be expressed as 8 times a square number plus 27 times a square number. This property of prime numbers was mentioned by a Shidinn enthusiast as an "unfortunate" property.
60
61
62
63
64
65
66
- ... is the third smallest Smarandache7[10] number.
67
68
69
70
71
- ... is the largest known positive integer whose square can be written as one plus the factorial of another positive integer.
- ... is the smallest positive palindromic7[16] prime number that is not repdigit7[8].
- ... is featured on this website. You can submit entries there.
72
- ... is the smallest positive integer that is not a perfect power but can be written as the product of perfect powers.
73
- ... is the third smallest repunit8[6] number.
- ... is the third smallest positive integer that is both palindromic2[16] and palindromicb3[23].
- ... is the second smallest positive integer that is the sum of three different positive cubic numbers.
- ... is the sum of the cubes of the three smallest positive palindromic3[16] numbers.
- ... is the smallest non-palindromic7[16] positive prime number that ends with two identical digits7[2].
- ... is the number of cards in the Seven elements poker game. The pack has 7 suits of 10 cards each, along with three extra cards (INF, 7UT and blank).
- ... is the theoretical number of distinct symbols in "Spot it" variant, with 9 symbols (instead of 8) on each card.
- ... is a number worshipped in Shidinn culture.
- ... is featured on this website. You can submit entries there.
74
75
76
- ... is the sum of the first three Smarandache7[10] numbers.
77
78
79
80
81
- ... is the third smallest positive tesseractic number.
- ... is in the username of User:DGCK81LNN.
82
- ... is a strobogrammaticxdi8 number.
83
84
85
86
87
88
89
- ... is the total number of letters in the Shidinn alphabet and the Extended Shidinn alphabet, including the "number zero" letter.
90
91
92
93
94
95
96
97
- ... is the last prime number that 10 ≤ x ≤ 99.
98
99
100
- ... is the smallest 2-digit100 number.
101
102
103
104
105
106
107
108
109
110
111
112
113
114
- ... is the number that is CURRENTLY thought as the truth of the universe.
115
116
117
118
119
120
121
122
123
124
125
126
127
- ... is a number worshipped in Shidinn culture.[lɤ ɛyuə iq8 q6]
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
- ... is the largest two-digit14[2] prime number.
194
195
- ... is the largest two-digit14[2] number.
196
- ... is the smallest three-digit14[2] number.
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
- ... is the second smallest three-digit14[2] square number.
226
227
- ... is the third smallest Smarandache14[10] number, as well as the smallest Smarandache14 prime number.
- ... is the second smallest prime number that can be expressed as 8 times a square number plus 27 times a square number. This property of prime numbers was mentioned by a Shidinn enthusiast as an "unfortunate" property.
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
See also
Notes
References
- ↑ 1.0 1.1 Base on Wolfram Mathwold
- ↑ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.34 Digit on Wolfram Mathworld
- ↑ 3.0 3.1 3.2 3.3 Recurring digial invariant on Wolfram Mathworld
- ↑ 4.0 4.1 Constant digit scanning on Wolfram Mathworld
- ↑ Full Reptend Prime on Wolfram Mathworld
- ↑ 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 Repunit on Wolfram Mathworld
- ↑ 7.0 7.1 Automorphic number on Wolfram Mathworld
- ↑ 8.00 8.01 8.02 8.03 8.04 8.05 8.06 8.07 8.08 8.09 8.10 Repdigit on Wolfram Mathworld
- ↑ 9.0 9.1 Repfigit on Wolfram Mathworld
- ↑ 10.0 10.1 10.2 10.3 10.4 Smarandache number on Wolfram Mathworld
- ↑ 11.0 11.1 Pandigital on Wolfram Mathworld
- ↑ Fermat pseudoprime on Wolfram Mathworld
- ↑ Harshad number on Wolfram Mathworld
- ↑ 14.0 14.1 14.2 14.3 Narcissistic number on Wolfram Mathworld
- ↑ Disarium number on OEIS
- ↑ 16.00 16.01 16.02 16.03 16.04 16.05 16.06 16.07 16.08 16.09 Palindromic on Wolfram Mathworld
- ↑ "Kind" number on OEIS
- ↑ 18.0 18.1 18.2 Reversal on Wolfram Mathworld
- ↑ 19.0 19.1 Concatenation on Wolfram Mathworld
- ↑ 20.0 20.1 Happy number on Wolfram Mathworld
- ↑ 21.0 21.1 21.2 Anti-Friedman number, Shifted Friedman number, Friedman pair, Friedman loop
- ↑ Cyclic number on Wolfram Mathworld
- ↑ Balanced ternary on Simple Wikipedia
- ↑ Squarefree number on Wolfram Mathworld
External links
- Numbers on Archimedes Lab