跳转到内容

-indicator

此后如竟没有炬火,我便是唯一的光。

-indicator (pronunciation: Eye-indicator, Shidinn language: - ) is a mathematical function mapping prime numbers to p-adic numbers, indicating how "similar" two primes are, in the sense of quadratic residues.

For any odd prime p, define the -indicator p : {q:q is a prime}∪{∞}→Qp , where Qp is the p-adic number field:

p(q) := ∑nN+ Kronecker(-n|q) pn

where Kronecker means the Kronecker symbol; for q=∞, since the local field on the "infinity prime", i.e. Q, stands for the real number field R, and all negative numbers are not square roots in R, we define:

p(∞) := ∑nN+ -pn = p/(p-1)

Obviously, for any prime q (including "infinity prime"), the terms of the infinity sum are periodic, thus the value of -indicator is definitely a rational number. Furthermore, p(q) times (pq-1) is an integer if q is a finite odd prime, and so is p(2) times (p8-1).

Here are some examples:

  • 3(2)=-12/41
  • 3(3)=-3/13
  • 3(5)=-24/121
  • 3(7)=-453/1093
  • 3(11)=-24249/88573

...

For any two "primes" q1 and q2 (no matter finite or infinite), the p-adic distance |p(q1)-p(q2)|p measures how similar q1 and q2 are. If |p(q1)-p(q2)|p < p-n for a positive integer n, then we can obtain that both negative integers -1..-n and positive integers 1..n (think why?) "performs" consistently on q1-adic and q2-adic (about whether the integer is a square).